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It is shown that the crystallite size refining and maintaining phenomena evidenced 
by the singly pro#moted ammonia catalyst can be attributed to a delicate balance 
between strain energy and surface energy effects. In the model presented the pro- 
motor acts as the point defect source of a strain field. The strain field of the point 
defects can be partially relaxed by the propinquity of a free surface. This com- 
minuting effect is resisted by the creation of free surface. It is shown that for 
a certain narrow range of material parameters the strain and surface terms achieve 
a balance which produces an equilibrium particle size. It is shown, finally, that the 
material parameters of the alumina-promoted iron catalyst lie in a range in which 
the strain-surface energy effect is feasible. 

There exists a class of catalyst promoter, 
typified by the alumina-promoted iron cat- 
alyst for ammonia synthesis, which appears 
to be effective in producing and maintain- 
ing a fine particle size, vis-a-vis enhancing 
the specific activity of the surface. It is 
common, in discussing such materials, to 
state that the promoter resides at or near 
the surface of the catalyst particle and 
inhibits thereby the sintering of adjacent 
particles. This type of description is vague 
and does not really define the physics (or 
chemistry) by which coalescence of par- 
ticles is hindered. In the present paper an 
attempt is made to define the nature of t,he 
sintering inhibition. 

Before proceeding to a description of the 
attack used here, it is useful to very briefly 
describe the processing of the catalyst and 
to enumerate a few of the structural details 
observed in the final product. The type of 
catalyst treated here is typically produced 
by the reduction of a mixed oxide. The 
oxide is generally dilute in the promoting 
agent, e.g., an iron-aluminum spine1 with 
an Al& content of some few percent. The 

following are some of the specific charac- 
teristics of the reduced FeAl spine1 am- 
monia synthesis catalyst. 

1. The initial specific activities of pro- 
moted and unpromoted reduced oxide are 
the same. However, the activity of the un- 
promot.ed catalyst drops rapidly with reac- 
tion time, relative t,o the promoted ma- 
terial (1). 

2. Promotion by alumina is effective only 
when the alumina is homogeneously dis- 
tributed in the iron oxide matrix prior to 
reduction (1, 2). 

3. The solubility of alumina in the re- 
duced spine1 is about 37%. Excess alumina 
precipitates out as thin particles separating 
iron grains (3). 

4. The activity of the singly promoted 
catalyst varies with alumina content and 
peaks at some 3% alumina (4). 

5. The Al exists in the reduced iron ma- 
trix as homogeneously distributed FeAI,O, 
point defects (5). These defects have a 
diameter about 6.3% too large for the sites 
they occupy and thereby cause a measura- 
ble and severe distortion of the matrix. 
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6. The crystallite size of the promoted, 
reduced catalyst is in the range 200-5OOK 
(5-7) . 

7. X-Ray line broadening studies show 
that the small crystallite size of the reduced 
catalyst is imparted with the reduction 
event and remains constant thereafter (7). 

Any explanation of the effect of ALO, 
on the ammonia catalyst must be consistent 
with these observations. Indeed, it is possible 
that such an explanation would have im- 
plications extending to Fischer-Tropf cat- 
alysts and other reduced oxide catalytic 
materials. 

The model presented here may be seen 
in the following way. It is clear from the 
work of Hosemann, Preisinger, and Vogel 
(5) that the alumina promoter in the re- 
duced iron catalyst exists as well-distrib- 
uted point defects and that these defects 
exert an enormous disruptive influence on 
the crystalline iron matrix. We envision the 
elastic nature of the point defect as in 
Fig. 1. In this we consider placing a small, 
hard sphere of radius r0 into a spherical 
hole of radius T’~ < r0 within a softer ma- 
trix material. In order to compute the 
elastic fields set up in fit,ting the large, 
hard sphere into t’he hole, we consider a 
pressure p to be appiled to the periphery 
of the hole to expand it to radius Tn. 
Finally the sphere is placed in the hole. 
If the sphere is much harder than the ma- 
trix, no relaxation of the matrix will occur 
and a radially directed stress of magnitude 
a,.,.(~,,) = -p acts at the interface between 
the sphere and the matrix. Thus a stress 

(01 (b) Cc) 

FIG. 1. Model for the calculation of elastic effects 
involved in the inclusion of a hard sphere defect in a 
relatively soft matrix: (a) separate soft matrix A 
(with spherical hole of radius ~‘0) and hard sphere B 
of radius r’~ > TO; (b) expansion, by pressure p, to 
increase hole in matrix from radius T’~ to radius TO; (c) 
insertion of hard sphere into the expanded hole in 
the matrix. 

field of magnitude CT,,(T) is generated within 
the solid. A considerable energy is stored in 
this stress field. Kow the stress field can be 
shown to be proportional to r3 (see Ap- 
pendix). Surfaces of constant stress level 
will be as depicted schematically in Fig. 2. 
Suppose the solid were now divided phys- 
ically into two parts, as shown in Fig. 2, a 
sphere of radius R containing the defect and 
the remainder. The two portions are not in 
contact; their former interface is replaced 
by two (adjacent) free surfaces. The total 
amount of energy stored can thereby be 
lowered (relative to the larger piece) be- 
cause the outer portion of the strain field 
now no longer exists. If only this effect were 
active, the new surface would be coin- 
cident with the particle-matrix interface, 
since maximum stress relief would be at- 
tained by removing the included particle 
entirely from the matrix. Indeed, this would 
be the case of phase separation. In our 
case, however, we presume the misfit to be 
not quite great enough to produce phase 
separation. We now note that the strain 
energy effect is constrained by a surface 
energy term of magnitude aXR2y, where y 
is the surface free energy (erg/cm”). Thus 
there should be some stable particle radius 
R at which the strain energy term plus the 
surface energy term reach a minimum. 

A similar situation should exist in a piece 
containing many stress-generating point de- 
fects. We might expect again a minimum 
energy particle size to exist. But now each 

FIG. 2. Schematic iso-stress lines about a hard 
spherical defect. Double broken line indicates 
truncation of spherical crystallite at radius R. 
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exists for calculating strain fields at the unit 
cell level. The model allows all defects not 
contained in the outer shell of thickness pr, 
to produce their full, infinite solid strain 
energy. 

The energy stored per unit volume is 
calculated, on this model, in the following 
way. In the cubic crystallite of edge D and 
random defect concentration N defects per 
unit volume, the number of defects neff 
which contribute to the st,rain energy is 

Veff = (D - 2pro)3N. (1) 

The active, stress-promot,ing fraction f of 
FIG. 3. Division into crystallites of breadth D a1' defects is then 

for a material containing a homogeneous distribution 
of point defects. 

(D - 2Pd3 jd&= D3 

particle could include several defects, as in 
Fig. 3. In this, each particle would contain 

= 1 - 6pr0 ; + 12p2r0* kz 

several interior defects whose elastic fields 
are essentially complete, as well as defecm 

- Sp3$ & (2) 

near the free surface with the fields con- 
siderably relaxed. In the next section we 

For defects which contribute an energy 

assess the functionality between the breadth 
E,t per defect the strain energy per unit 

D of such regions and the nhvsical param- 
volume E 8 will be 

eters of the material. - - E, = j-NE<,. (3) 

ANALYSIS In addition, surface of area 120’ (12, not 

It is not difficult to show that beyond a 
6, since two surfaces form for each “cut”) 

radius of some R = 3r, the energy of a 
and energy y per unit area is created for 

sphere of radius R is not significantly dif- 
each crystallite formed. The interfacial 

ferent from the energy stored in a sphere 
energy E, stored per unit volume is thus 

of infinite extent. This exercise is performed 
in the Annendix. With this result we can 

F = 12D2r 1% 
JI -=-- 03 D (4) 

get some-idea as to the equilibrium particle 
size by considering a model in which all The total energy stored for a system com- 

defects within some thin shell near the free posed of crystallites of width D is thus 

ET = E, -I- Er surface are totally relaxed, whereas those 
below that shell maintain their entire elastic 
field. This is the situation idealized in Fig. 
3 and in the subsequent algebra. 

We consider here a solid separated into 
cubic crystallites of diameter B. These 
crystallites are fully separated from each 
other. As indicated above, we presume that 
any point defects whose centers lie within 
pr, (p = small integer) of the surface are 
fully relaxed. Surely this will be the case 
if p = 1; then the particle lies in the sur- 
face. The condition could possibly also be 
satisfied for p = 2 or p = 3, but no vehicle 

= 1 - 6pro ; + 12p2r02 & - 3p3r03 & 

X NEd + T. (5) 

The condition for equilibrium of this sys- 
tem is that ET be a minimum with respect to 
D (aE&Djmzm = 0). Thus, 

()=dET 
dD De 

= (6PToNEd - 127) & 

- 24p2r02NEd g3 + 24p3r03NE,j &- (6) 
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21 

FIG. 4. Equilibrium crystallite size versus energy parameter NE&y. 

Solving this quadratic algebraic equation for 
D”, the equilibrium crystallite size, we find 

D* = .%7nP f @r/pr&E$~21 
1 - (2yl~roNEd (7) 

Figure 4 shows D”, the equilibrium crys- 
tallite thickness plotted against NEd/2y 
using p = l&3, and 4.” In the computation 
a value of r. = 4.5 A was used. This value 
is commensurate with the FeAl,O, defect 
model proposed by Hosemann and Prei- 
singer (5). Figure 4 demonstrates that for 
any reasonable value of p (representing 
the excluded layer thickness) D* is not far 
different from 2pro, the thickness of two 
excluded layers, unless NEd/2y lies below 
some critical level. However, below this 
critical level the value of D” begins a 
dramatic increase as NEd/2y is lowered. 
The high NEd/2y behavior represents a 
tendency toward phase segregation. The 
trend of D” going to infinity as NEd/2y 
approaches (pro)-l represents the other ex- 
treme, in which the strain energy term is 
always small compared with the surface 
energy contribution. The limiting case here 
represents the normal random solid solution 
behavior. But most importantly, we ob- 
serve an intermediate region in which 
NE,/2y is of the same order as (pro)-I. In 

*In the computation the + sign was used in 
the numerator. The - sign represents the case 

in which the point defect is sequestered by a free 
surface at its periphery. 

this size domain D* is markedly affected 
by the explicit value of NEd/2y. This is the 
size domain in which the point defect con- 
tent should produce a stable crystallite size. 

The value of NEd/2y for the optimal am- 
monia catalyst appears to fall in the proper 
regime for defect control. For this material 
appropriate values are as follows: 

a. the weight fraction of A1,03 in the 
material is about 3% (3) ; 

b. the linear dilatation of the FeA1,04 
defect in the Fe lattice is about 6.25% (5) ; 

c. p = 8.6 X lOI dyne/cm2 (8) and 
d. y = lo3 erg/cm’ [a value representa- 

tive of solid-vapor surface energies (9) 1. 
Using the 3 wt % value for the ALO con- 
tent, we find for N: 

N(=$) = (.039)(7.87=&) 

x 1 g mole ALO 
8.6 g Al203 

ALO, molecules 
g mole A1203 

= 1.65 X 102l h!$$! (8) 

For Ed we use (A4) in the limit R + CO : 

Ed = g (9) 

where p is the shear modulus and &v/v is 
the volume dilation. In,our case 
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Ed = ; (8.6)(10)11(4.5)3(10)-24(l.063 - 1)2 
0 

= 8.36,x lo-12. (10) 

Multiplying (8) by (10) we find NEd2y = 
0.7 X lo7 erg,/cm3. This value is of the cor- 
rect order of magnitude to produce a strain 
energy comminution effect (see, e.g., curves 
p = 3, p = 4 of Fig. 4). With the approx- 
imations involved in deriving (7) and with 
the numerical uncertainties in Fig. 4, it is 
impossible to do more than to demonstrate 
this feasibility. 

DISCUSSION 

The thrust here has been to demonstrate 
that the equilibration of strain and sur- 
face effects results in a stable particle size 
under certain conditions. The particle is 
constrained by strain energy from growth 
and by surface energy from shrinking. The 
argument, however, rests upon the inability 
of the point defects to move to the surface 
of the crystallite. The results of Hosemann, 
Preisinger, and Vogel (5) indeed indicate 
that the defects remain distributed within 
the crystallites. Undoubtedly the large size 
of the FeA1,04 defect renders it quite im- 
mobile in the Fe lattice. We would then 
envision the recrystallization which occurs 
during reduction to proceed via iron atom 
rearrangements about the immobile defects. 
Clearly, such a process requires an initial 
homogeneous distribution of cations in the 
spinel. It is unlikely that procedures which 
are much different from the reduction of 
mixed oxides would produce the proper 
homogeneity and immobility of the defect. 

In general the above model satisfies all of 
the requirements set forth in the introduc- 
tion : 

1. There should be no difference in initial 
reactivity between promoted and unpro- 
moted materials. The difference should oc- 
cur with time as the unpromoted catalyst 
sinters. 

2. The activity of the catalyst requires a 
high promoter concentration, but is not 
aided by concentrations so large that pre- 
cipitation of the promoter occurs. Figure 
4 shows that the maximum effect of pro- 

motion should be achieved for concentra- 
tions just below the solubility limit. 

3. A homogeneous distribution of pro- 
moter and a large defect size are both 
essential to the comminution effect, 

4. The crystallite size comminution 
should be coincident with the reduction 
process and should not change thereafter. 

Finally, the comminution effect described 
here rests on a very delicate balance of 
proper values of material parameters (N, 
E d, y, ,+ &v, rO). While these considerations 
should lead toward rational engineering of 
new strain-cornminuted materials, achiev- 
ing a proper balance of material parameters 
will not reduce the arduousness of the task. 

APPENDIX. ELASTIC FIELD AROCT AN 
INCLUDED DEFECT 

The radially directed displacement field 
u7 about the defect is related to the radial 
position r, the volume 6v displaced by the 
defect sphere, the shear and bulk moduli, 
I-L and X, of the matrix, and the radius R 
of the crystallite through (10) 

From the displacement field the radial 
strain and stress fields, cl.? and u’,.~ are 
written 

(A3) 

In (A2) we have substituted values of p 
and x which are appropriate fcr a-iron 
(,u = 8.6 X 10X1 dyne/cm2, X = 12.1 X 1O1l 
dyne/cm2). The total energy stored in the 
sphere is thus 

ER =- 
/ 

R (4Tr%&,dr = pg 
F;R"- 7% 

X[-2.357(;)3+3-1.32(;) 

X In g - 0.643 2 
6 

01 - (A41 

According to t,his result of classical elas- 
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ticity, the strain energy contained in a 
sphere of radius R = 2r, is 13% less than 
that contained in an infinite solid, while 
the energy contained in spheres of 3r, and 
4r, are 4 and 2% of the infinite solid value. 
Clearly classical elasticity will not have 
quantitative meaning at this unit cell size 
level. Nevertheless we may safely conclude 
that the defect must exist immediately 
adjacent to a free surface if its strain 
energy contribution is to be significantly 
lowered. 
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